Maths Planning Overview 2023-24

Year: 2 Term: Autumn 1

BLACK CURRICULUM OBJECTIVE, RED WT, GREEN EXPECTED, BLUE GREATER DEPTH

Week 1 First 3 days Practical week alongside assessments	Week 2 START LOOPY Place value	Week 3 Place value	Week 4 Calculation Number bonds	Week 5-7 Calculation Addition
Assessment opportunities and try to evidence these, e.g. through WT assessment booklet Count in steps of 2, 5 and 10 from 0 , and in tens from any number, forward and backward count in twos, fives and tens from 0 and use this to solve problems Read and write numbers to at least 100 in numerals and in words read and write numbers in numerals up to 100	Recognise the place value of each digit in a two-digit number (tens, ones) including 0 as a place holder partition a two-digit number into tens and ones to demonstrate an understanding of place value, though they may use structured resources to support them Identify, represent and estimate numbers using different representations, including the number line	Compare and order numbers from 0 up to 100; use <, > and = signs	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 Recall at least four of the six number bonds for 10 and reason about associated facts (e.g. $6+4=10$, therefore $4+6=10$ and $10-6=4$) Recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, Recognising other associated additive relationships (e.g. If $7+3=10$, then $17+$ $3=20$; if $7-3=4$, then $17-3=14$; leading to if $14+3=17$, then $3+14=$ 17, $17-14=3$ and $17-3=14$) NB- aim to evidence every single part of this objective as per the examples in brackets, this could be picked up at moderation Will be returned to later in the year	solve problems with addition and subtraction: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures - applying their increasing knowledge of mental and written methods add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens

Year: 2 Term: Autumn 2

Week 1-3	Week 4-6
Calculation	Calculation
Subtraction	Multiplication and division

Add and subtract numbers using concrete objects, pictorial representations, and mentally, including:

- a two-digit number and ones
- a two-digit number and tens

Add and subtract two-digit numbers and ones, and twodigit numbers and tens, where no regrouping is required, explaining their method verbally, in pictures or using apparatus (e.g. $23+5 ; 46+20 ; 16-5 ; 88-30$)

Add and subtract any 2 two-digit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (e.g. $48+35 ; 72-17$)

Use reasoning about numbers and relationships to solve more complex problems and explain their thinking (e.g. $29+17=15+4+\square$; 'together Jack and Sam have £14. Jack has £2 more than Sam. How much money does Sam have? etc.)
recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
recall multiplication and division facts for 2, 5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary recall and use multiplication and division facts for 2,5 and 10 and make deductions outside known multiplication facts
calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs
show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts
solve unfamiliar word problems that involve more than one step (e.g. 'which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?')

Notes and guidance (non-statutory)

They connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock face.
relate to grouping and sharing discrete and continuous quantities, to arrays and to repeated addition. They begin to relate these to fractions and measures

Maths Planning Overview 2023-24

Year: 2 Term: Spring 1

BLACK CURRICULUM OBJECTIVE, RED WT, GREEN EXPECTED, BLUE GREATER DEPTH

Week 1-2 Calculation Addition	Week 3-4 Calculation Subtraction	Week 5-6 Calculation Inverse + biggest number first
NB- revisiting of previous addition objectives (2 digit and 1 's, 2 digit and tens should be happening through fluent in five) New Learning: two two-digit numbers adding three one-digit numbers add and subtract two-digit numbers and ones, and two-digit numbers and tens, where no regrouping is required, explaining their method verbally, in pictures or using apparatus (e.g. $23+5 ; 46+20 ; 16-5 ; 88-30$) add and subtract any 2 two-digit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (e.g. $48+35 ; 72-17$) use reasoning about numbers and relationships to solve more complex problems and explain their thinking (e.g. $29+17=15+4+\square$; 'together Jack and Sam have £14. Jack has £2 more than Sam. How much money does Sam have? etc.)	NB- revisiting of previous subtraction objectives (2 digit and 1's, 2 digit and tens should be happening through fluent in five) New Learning: two two-digit numbers (no crossing 10s yet for most) Add and subtract two-digit numbers and ones, and two-digit numbers and tens, where no regrouping is required, explaining their method verbally, in pictures or using apparatus (e.g. $23+5$; $46+20 ; 16-5 ; 88-30)$ Add and subtract any 2 two-digit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (e.g. $48+35 ; 72-17$) Use reasoning about numbers and relationships to solve more complex problems and explain their thinking (e.g. $29+17=15+$ $4+\square$; 'together Jack and Sam have £14. Jack has $£ 2$ more than Sam. How much money does Sam have? etc.)	Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. Use reasoning about numbers and relationships to solve more complex problems and explain their thinking (e.g. $29+17=15$ $+4+\square$; 'together Jack and Sam have £14. Jack has £2 more than Sam. How much money does Sam have? etc.)

Maths Planning Overview 2023-24

Year: 2 Term: Spring 2

BLACK CURRICULUM OBJECTIVE, RED WT, GREEN EXPECTED, BLUE GREATER DEPTH

Week 1-2 Fractions NB- make links to turns	Week 3 Place Value- NB- revisit from Autumn 2 if needed	Week 4 Measure- money NB- ensure that PV, addition and subtraction opportunities are included within this loop	Week 5 Measure- rotate around mass, capacity, length/height and temperature NB- focus on scale reading	Week 6 Calculations Number Bonds NB- been covered once before so potential to skip if evidence was thorough
recognise, find, name and write fractions $1 / 31 / 42 / 4$ and $3 / 4$ a length, shape, set of objects or quantity identify $1 / 4,1 / 3,1 / 2,2 / 4,3 / 4$, of a number or shape, and know that all parts must be equal parts of the whole write simple fractions for example $\frac{1}{2} \text { of } 6=3$ and recognise the equivalence of $\frac{2}{4} \text { and } \frac{1}{2}$ Notes and guidance (nonstatutory) They connect unit fractions to equal sharing and grouping, to numbers when they can be calculated, and to measures,	Use place value and number facts to solve problems Partition numbers in different ways (for example, 23=20 +3 and $23=$ $10+13)$ partition any two-digit number into different combinations of tens and ones, explaining their thinking verbally, in pictures or using apparatus	recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value find different combinations of coins that equal the same amounts of money know the value of different coins use different coins to make the same amount solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change Notes and guidance (nonstatutory) They read and say amounts of money confidently and use the symbols $£$ and p accurately, recording pounds and pence separately.	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels read scales* in divisions of ones, twos, fives and tens read scales* where not all numbers on the scale are given and estimate points in between compare and order lengths, mass, volume/capacity and record the results using >, < and = Notes and guidance (nonstatutory) Comparing measures includes simple multiples such as 'half as high'; 'twice as wide'.	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 recall at least four of the six number bonds for 10 and reason about associated facts (e.g. $6+4$ $=10$, therefore $4+6=10$ and $10-6=4$) recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships (e.g. If $7+3=10$, then $17+3=20$; if $7-3=4$, then $17-3=14$; leading to if 14 $+3=17$, then $3+14=17,17-$ $14=3$ and $17-3=14$) NB- ensure that you evidence every single part of this objective as per the examples in brackets, this could be picked up at moderation

Maths Planning Overview 2023-24

Year: 2 Term: Summer 1

BLACK CURRICULUM OBJECTIVE, RED WT, GREEN EXPECTED, BLUE GREATER DEPTH

Week 1-2 Geometry- 2D and 3D shape	\qquad Week 3-4 Time NB- make links to turns	Week 5 few days Geometry Position and direction NB- few odd lessons not a loop	Week 5 few days Statistics NB- few odd lessons not a loop, ensure scale of $2,5,10$ is covered	Week 6
identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces name some common 2-D and 3-D shapes from a group of shapes or from pictures of the shapes and describe some of their properties (e.g. triangles, rectangles, squares, circles, cuboids, cubes, pyramids and spheres). describe similarities and differences of 2-D and 3-D shapes, using their properties (e.g. that two different 2-D shapes both have only one line of symmetry; that a cube and a cuboid have the same number of edges, faces and vertices, but different dimensions). identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] compare and sort common 2-D and 3-D shapes and everyday objects. Notes and guidance (non-statutory) Pupils handle and name a wide variety of common 2-D and 3D shapes including: quadrilaterals and polygons, and cuboids, prisms and cones, and identify the properties of each shape (for example, number of sides, number of faces). Pupils read and write names for shapes that are appropriate for their word reading and spelling. Pupils draw lines and shapes using a straight edge.	Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times Read the time on the clock to the nearest 15 minutes. Read the time on the clock to the nearest 5 minutes. Know the number of minutes in an hour and the number of hours in a day.	Order and arrange combinations of mathematical objects in patterns and sequences (covered in Yr 1) Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise).	Interpret and construct simple pictograms, tally charts, block diagrams and simple tables Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity Ask and answer questions about totalling and comparing categorical data. Notes and guidance (non-statutory) Pupils record, interpret, collate, organise and compare information (for example, using many-to-one correspondence in pictograms with simple ratios $2,5,10$).	TEST

Summer 2

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
Additional evidence gathering in light of SATs assessments- may vary between classes according to need	Theme week	Fiver challenge			

